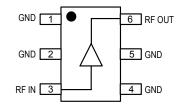


Product Features

- DC 6000 MHz
- +8 dBm P1dB at 900 MHz
- +20 dBm OIP3 at 900 MHz
- 20 dB Gain at 900 MHz
- Single Voltage Supply
- Green SOT-363 SMT Pkg.
- Internally matched to 50 Ω

Applications

- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless


Product Description

The AG203-63 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG203-63 typically provides 20 dB gain, +20 dBm OIP3, and +8 dBm P1dB. The device combines dependable performance with consistent quality to maintain MTTF values exceeding 100 years at mounting temperatures of +85° C and is housed in leadfree/green/RoHS-compliant SOT-363 industry standard SMT package.

The AG203-63 consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT technology process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, and W-CDMA. In addition, the AG203-63 will work for other various applications within the DC to 6 GHz frequency range such as CATV and fixed wireless.

Functional Diagram

Function	Pin No.
Input	3
Output/Bias	6
Ground	1, 2, 4, 5

Specifications (1)

_Parameter	_Units_	_ Min	_ Typ _	_Max_
Operational Bandwidth	MHz	DC		6000
Test Frequency	MHz		900	
Gain	dB		19.7	
Input Return Loss	dB		20	
Output Return Loss	dB		16	
Output IP3 (2)	dBm		+20.1	
Output IP2	dBm		+24	
Output P1dB	dBm		+8.0	
Noise Figure	dB		3.0	
Test Frequency	MHz		1900	
Gain	dB	16.8	17.8	18.8
Output IP3 (2)	dBm		+19.7	
Output P1dB	dBm		+7.4	
Device Voltage	V		4.05	
Device Current	mA		20	

- 1. Test conditions: T = 25° C, Supply Voltage = +5 V, R_{bias} = 47.5 Ω , 50 Ω System. 2. 3OIP measured with two tones at an output power of -10 dBm/tone separated by 10 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule

Typical Performance (1)

Parameter	Units	Typical						
Frequency	MHz	500	900	1900	2140			
S21	dB	20.3	19.7	17.7	17.3			
S11	dB	-25	-20	-18	-16			
S22	dB	-16	-16	-16	-16			
Output P1dB	dBm	+8.1	+8.0	+7.4	+6.8			
Output IP3	dBm	+20.2	+20.1	+19.7	+19.5			
Noise Figure	dB	2.9	3.0	3.2	3.2			

Absolute Maximum Rating

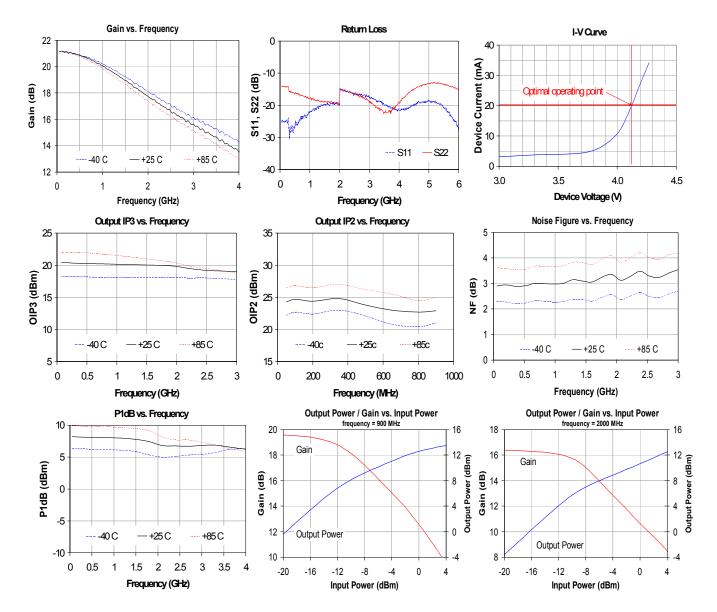
Parameter	Rating
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-55 to +125 °C
DC Voltage	+4.5 V
RF Input Power (continuous)	+10 dBm
Junction Temperature	+250 °C

Operation of this device above any of these parameters may cause permanent damage

Ordering Information

Part No.	Description
AG203-63*	InGaP HBT Gain Block (lead-tin SOT-363 Pkg)
AG203-63G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-363 Pkg)
AG203-63PCB	700 – 2400 MHz Fully Assembled Eval. Board

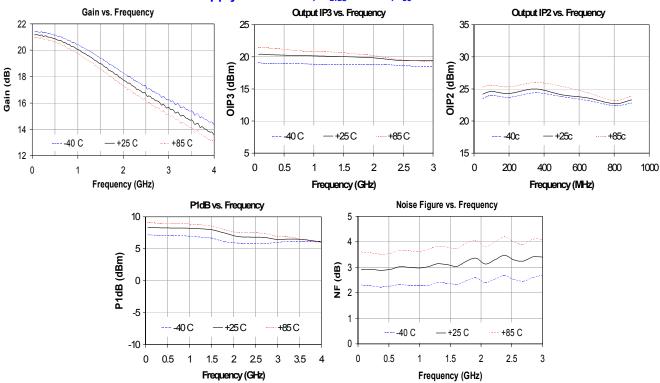
This package is being phased out in favor of the green package type which is backwards compatible for existing designs. Refer to Product Change Notification WJPCN06MAY05TC1 on the WJ website.

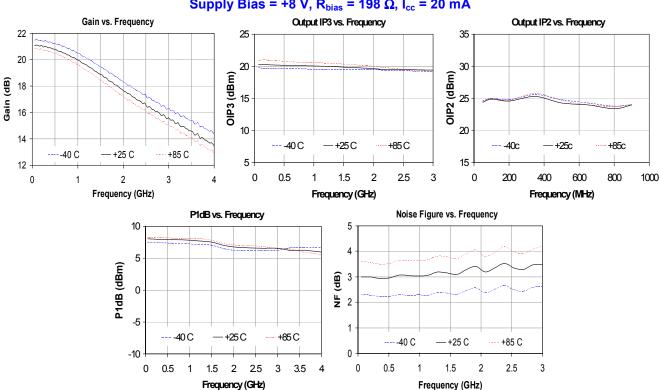

Typical Device RF Performance Supply Bias = +5 V, R_{bias} = 47.5 Ω , I_{cc} = 20 mA

Frequency	MHz	100	500	900	1900	2140	2400	3500	5800
S21	dB	20.4	20.3	19.7	17.7	17.3	16.7	14.9	11.5
S11	dB	-25	-25	-20	-18	-16	-16	-20	-20
S22	dB	-14	-16	-16	-16	-16	-16	-20	-14
Output P1dB	dBm	+8.2	+8.1	+8.0	+7.4	+6.8	+6.8	+6.6	
Output IP3	dBm	+20.3	+20.2	+20.1	+19.7	+19.5	+19.5		
Noise Figure	dB	2.9	2.9	3.0	3.2	3.2	3.3		

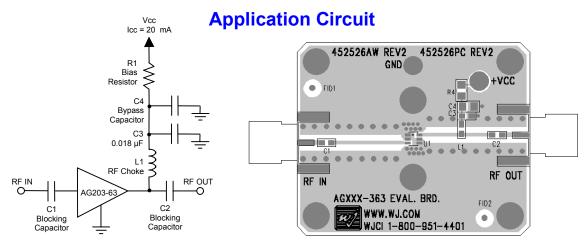
- 1. Test conditions: T = 25° C, Supply Voltage = +5 V, Device Voltage = 4.05 V, Rbias = 47.5 Ω, Icc = 20 mA typical, 50 Ω System.

 2. 3OIP measured with two tones at an output power of -10 dBm/tone separated by 10 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.


 3. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by external components shown in the application circuit.


Typical Device RF Performance (cont'd)

Supply Bias = +6 V, R_{bias} = 98 Ω , I_{cc} = 20 mA



Typical Device RF Performance

Supply Bias = +8 V, R_{bias} = 198 Ω , I_{cc} = 20 mA

Recommended Component Values

Reference	Frequency (MHz)							
Designator	50	500	900	1900	2200	2500	3500	
L1	820 nH	220 nH	68 nH	27 nH	22 nH	18 nH	15 nH	
C1, C2, C4	.018 μF	1000 pF	100 pF	68 pF	68 pF	56 pF	39 pF	

The proper values for the components are dependent upon the intended frequency of operation.

2. 2. The following values are contained on the evaluation board to achieve optimal broadband performance:

Ref. Desig.	Value / Type	Size
L1	39 nH wirewound inductor	0603
C1, C2	56 pF chip capacitor	0603
C3	0.018 μF chip capacitor	0603
C4	Do Not Place	
R1	47.5 Ω 1% tolerance	0603

Recommended Bias Resistor Values

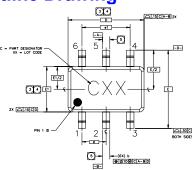
Supply Voltage	R1 value	Size
5 V	47.5 ohms	0603
6 V	98 ohms	0603
7 V	148 ohms	0805
8 V	198 ohms	0805
9 V	248 ohms	1206
10 V	298 ohms	1210
12 V	398 ohms	1210

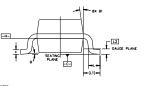
The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +5 V. A 1% tolerance resistor is recommended.

Typical Device Data S-Parameters ($V_{device} = +4.05 \text{ V}$, $I_{CC} = 20 \text{ mA}$, $T = 25^{\circ}\text{C}$, calibrated to device leads)

5 0 CT 1		Tr.	device 1100					
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-25.17	2.44	20.58	177.54	-23.20	1.82	-14.17	-3.37
250	-25.43	19.92	20.51	168.67	-23.93	4.61	-14.24	-8.75
500	-26.52	51.29	20.37	157.36	-23.52	3.76	-16.44	-18.23
750	-23.65	49.78	20.03	146.65	-23.46	5.05	-16.98	-30.04
1000	-22.07	40.71	19.64	136.55	-23.56	2.97	-17.77	-41.16
1250	-20.63	39.53	19.22	126.53	-23.03	6.36	-18.33	-55.53
1500	-19.78	35.18	18.75	117.55	-22.67	6.26	-18.95	-69.93
1750	-19.32	28.81	18.25	108.83	-22.55	8.11	-19.10	-85.56
2000	-18.82	22.65	17.69	100.49	-22.09	7.05	-19.08	-98.01
2250	-15.68	16.21	17.13	93.38	-21.84	7.56	-15.66	-96.28
2500	-16.33	9.66	16.75	88.14	-21.92	3.19	-16.65	-105.75
2750	-16.81	6.23	16.32	80.77	-21.04	4.47	-17.53	-113.94
3000	-17.51	4.58	15.86	74.01	-20.83	5.19	-19.10	-128.07
3250	-18.69	6.09	15.43	67.67	-20.59	5.81	-20.58	-142.56
3500	-19.88	9.58	15.01	61.27	-20.34	3.51	-22.15	-171.10
3750	-20.81	20.17	14.56	54.88	-19.86	1.07	-21.67	154.83
4000	-21.48	40.62	14.14	48.38	-19.12	0.00	-19.12	134.30
4250	-21.14	57.36	13.76	42.54	-19.02	-1.99	-16.77	118.64
4500	-19.74	72.23	13.30	36.58	-18.70	-6.17	-14.99	108.52
4750	-19.01	82.70	12.91	30.19	-18.67	-7.40	-14.02	104.45
5000	-18.41	89.08	12.54	24.69	-18.26	-10.48	-13.28	102.92
5250	-19.09	94.75	12.18	19.42	-18.05	-12.75	-13.13	100.56
5500	-20.88	99.20	11.82	14.41	-17.84	-14.26	-13.43	100.66
5750	-23.32	109.55	11.60	9.32	-17.44	-17.25	-14.24	103.15
6000	-27.64	125.83	11.35	4.32	-17.10	-20.45	-14.82	106.42

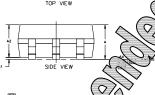

Device S-parameters are available for download on the website at: http://www.wj.com




AG203-63 (SOT-363 Package) Mechanical Information

This package may contain lead-bearing materials. The plating material on the leads is Snl

Outline Drawing



Land P

0

this part are 'Application

ion! ESD sensitive device.

Class 1C Passes at 1000 V min.

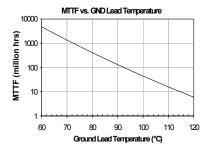
Human Body Model (HBM) JEDEC Standard JESD22-A114

ESD Rating: Level 4

Passes at 1000 V min. Value:

Charged Device Model (CDM) Test: JEDEC Standard JESD22-C101 Standard:

MSL Rating: Level 1

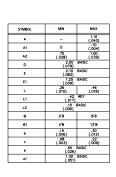

JEDEC Standard J-STD-020 Standard:

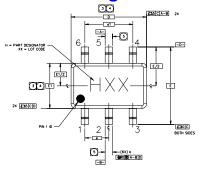
Mounting Config. Notes

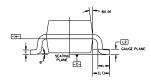
- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance. Mounting screws can be added near the part to fasten the
- board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in

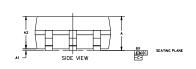
nced from the hottest part to the good pin (pin 4).

typical biasing condition of h 85°C case temperature. 1 million hours is achieved for res below 177 °C.

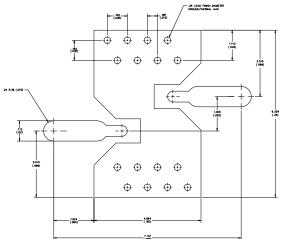

Specifications and information are subject to change without notice




AG203-63G (Green / Lead-free SOT-363 Package) Mechanical Information


This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and leaded (maximum 245°C reflow temperature) soldering processes. The plating material on the leads is annealed matte tin over copper.

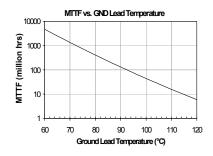
Outline Drawing



- NOIES:

 1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1194, PACKAGE CONFORMS TO JEDEC MO-203, ISSUE B.
- 3) DMENSON D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PC END, DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15 mm PER SIDE.

 D. AND ET DIMENSIONS ABE DETERMINED AT DATIM H.
- THE PACKAGE TOM MAY BE SMALLER THAN THE PACKAGE BOTTOM DIMENSIONS DAND EL ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MICH PLASH, TE BOAR BURRS, CATE BURRS AND INTERCAS PLASH, BUT HOLDING ANY MISMATCH BETWENN THE TOWN THE BOTTOM OF THE PLASTIC BURNSHAP AND THE BOTTOM OF THE PLASTIC AT DATA HE I DIMENSIONS AND EXTREMENTATION OF THE PLASTIC.
- 5 DATUM A & B TO BE DETERMINED AT DATUM H.
- (6) DIMENSION 'S' DOES NOT INCLUDE DAMBAR PROTINSION, ALLOWABLE DAMBAR PROTINSION, SHALL BE 0.08 mm 1014. IN EXCESS OF THE 'S' DIMENSION AT MAXIMUM MATERIAL CONDITION. THE COMMENT IS NOT LOCATED ON THE COMEN PROTINSION LIND AN ADMAND SPACE BETWEEN PROTINSION LIND AN ADMAND SPACE BETWEEN BE LESS THAN 0.07 MADAGENT LEND SHALL NO BE LESS THAN 0.07 MADAGENT LEND SHALL NO BE LESS THAN 0.07 MADAGENT LEND SHALL NO


Land Pattern

Thermal Specifications

Parameter	Rating
Operating Case Temperature	-40 to +85°C
Thermal Resistance, Rth (1)	472° C/W
Junction Temperature, Tjc (2)	123° C

- 1. The thermal resistance is referenced from the hottest part of the junction to the ground pin (pin 4).
- This corresponds to the typical biasing condition of +4.05V, 20 mA at an 85°C case temperature. A minimum MTTF of 1 million hours is achieved for junction temperatures below 177 °C.

Product Marking

The component will be marked with an "H" designator followed by a two-digit numeric lot code on the top surface of the package.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

MSL / ESD Rating

Caution! ESD sensitive device.

ESD Rating: Class 1C

Value: Passes at 1000 V min.
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: Class IV

Value: Passes at 1000 V min.

Test: Charged Device Model (CDM) Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 3

Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degree

Specifications and information are subject to change without notice